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ABSTRACT

In this paper, we present an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic

problems. In this multigrid method various types of smoothers may be used. One type of smoother which we

consider is defined in terms of an associated symmetric problem and includes point and line, Jacobi and Gauss-

Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal

form, that is, the product of the operator and its transpose, Other smoothers studied include point and line,

Jacobi and Gauss-Seidel. We show that the uniform estimates of (ref. 6) for symmetric positive definite problems

carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite
problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is

sufficiently fine (but not depending on the number of multigrid levels).

1. INTRODUCTION

The purpose of this paper is to study certain multigrid methods for second order elliptic boundary value

problems including problems which may be nonsymmetric and/or indefinite. Multigrid methods are among
the most efficient methods available for solving the discrete equations associated with approximate solutions of

elliptic partial differential equations. Since their introduction by Fedorenko (ref. 15), there has been intensive

research toward the mathematical understanding of such methods. The reader is referred to (ref. 19), (ref. 17) and
(ref. 3) and the bibliographies therein. Most of these works concern symmetric, positive definite elliptic problems

although a few consider nonsymmetric and/or indefinite problems. In particular, (ref. 1),(ref. 18), (ref. 10) and

(ref. 24) deal with such multigrid algorithms and are most closely related to the subject of this paper. All of these
papers share the requirement that the coarse grid be sufficiently fine. We shall briefly describe their contents.
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The paper by Bank (ref. 1) derives uniform convergence estimates for the W-cycle multigrid iteration with
both a standard Jacobi smoother and a smoother which uses the operator times its adjoint. In each case, a
sufficient number of smoothings are required and a sufficiently fine coarse grid, depending on the number of

smoothings, is needed. Some regularity for the elliptic partial differential equation was also required.

Mandel studied the V-cycle iteration and showed that it was effective with only one smoothing and a
sufficiently fine coarse grid. His result requires that the underlying partial differential equation satisfies the "full

elliptic regularity" hypothesis and generalizes the results of Braess and Hackbusch (ref. 2) for the symmetric
positive definite problem.

Bramble, Pasciak and Xu (ref. 10) studied the symmetric smoother introduced by Bank and showed that
the W-cycle and variable V-cycle worked without making the undesirable requirement of "sufficiently many
smoothings". Somewhat more than minimal regularity was needed.

In (ref. 24), Wang showed that, for the standard V-cycle with one smoothing, the "reduction factor" for the
iteration error was bounded by 1 - C/J + Clhl where J is the number of levels, hi is the size of the coarsest grid
and C and C1 are constants. This estimate deteriorates with the number of levels and will be less than one only if
the coarse grid is subsequently finer as the number of levels increases. Minimal elliptic regularity was assumed.

In thispaperuniformiterativeconvergenceestimatesforV-cyclemultigridmethods appliedtononsymmetric

and/orindefiniteproblemsareprovedunder ratherweak assumptions(e.g.,the domain neednot be convex).
Uniformestimateswereshown toholdin (ref.6)and (ref.8)fortheV-cyclewithone smoothingstepin

thesymmetricpositivedefinitecaseundersuchhypotheses.We show thattheseresultscarryovertothe

nonsymmetricand/orindefinitecasefora varietyofsmoothers.The coarsegridmust be fineenoughbut need

not dependon thenumber oflevelsJ. Such a conditionseems unavoidablesince,inmany cases,itisneededeven

fortheapproximateproblemtomake sense.

In recent years, some other techniques have been proposed to handle the nonsymmetric indefinite case. One

approach in (ref. 14), (ref. 4) and (ref. 7) is to precondition with a symmetric operator and then solve certain
normal equations by the conjugate gradient method. One possible advantage of such a method is that some
nonsymmetric problems which are not "compact perturbations" of symmetric ones may be treated. Of course, the
usual normal equations may be formed and then preconditioned (cf. (ref. 7) and (ref. 20)); this approach seems
to be rather restrictive in that good preconditioners may be difficult to construct. Other recent approaches have
included Schwarz type methods (ref. 12) and two-level methods in which a "coarse space" is introduced to reduce
the problem to one with a positive definite symmetric part (cf. (ref. 4), (ref. 13) and (ref. 25)).

The remainder of the paper is organized as follows: In Section 2, we describe a model problem and introduce
the multigrid method. In Section 3, smoothers based on the symmetric problem (and used in our nonsymmetric
and/or indefinite applications) are defined and the relevant properties which they satisfy are stated. Section
4 develops smoothers based on the original problem. The main results of the paper, which provide iterative
convergence rates for the multigrid algorithms with the smoothers of Sections 3 and 4, are given in Section 5.

2. THEPROBLEM i iZ -TIGRIDALGORITHM.

We set up the model nonsymmetric problem and the simplest multigrid algorithm in this section. We consider,

for simplicity, the Dirichlet problem in two spatial dimensions approximated by piecewise linear finite elements
on a quasi-uniform mesh. The multigrid convergence results hold for many extensions and generalizations as
discussed at the end of Section 5.
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We consider as our model problem the followingsecond order ellipticequation with homogeneous boundary

conditions.

a, au, au
_ 2..#w..-taiiw.--)+___bi_zi+au= f in ft,

(2.1) i,j--- 1 GXj O'Zi i---1

u=O on aft,

where ftisa polygonal domain (possiblynonconvex) in R 2 and {aij(z)}isbounded symmetric, and uniformly

positivedefinitefor z E ft.We assume that aijisin the Sobolev space W_(ft) forp > 2/7 (see,(ref.16) for

the definitionof W_(ft)). Further,we assume that biiscontinuouslydifferentiableon fiand that lalisbounded.

Finally,we assume that the solutionof (2.1)exists.

Let H I(ft)denote the Sobolev space oforder one on ft(cf.,(ref.16))and letH_ (ft)denote those functionsin

H1(ft) whose tracevanish on aft. For v,w • H_(ft),define

(2.2) /ov2 Ov aw dx -4-_ bi'_xiw dx -4" avw dx.A(v, w) = auOx"'70zi i=l

The solution u of (2.1) satisfies

(2.3) A(u, v) = (f, v) for all v • H_(ft),

where (., .) denotes the inner product in L2(ft).

For the analysis, we introduce a symmetric positive definite form A(., .) which has the same second order part

as A(., .). We define A(., .) by

i,j---1

The difference is denoted by
D(u, v) = A(u, v) - .A(u, v).

The form D(., .) satisfies the inequalities

(2.4) ID(u, v)l <__c [lull, Ilvll and ID(u, v)l <__C Ilull Ilvlh •

here I1% and II'll denote the norms in H_(fl) and L2(ft) respectively. The second inequality above follows
from integration by parts. Here and throughout the paper, c or C, with or without subscript, will denote a

generic positive constant. These constants can take on different values in different occurrences but will always be

independent of the mesh size and the number of levels in multigrid algorithms.

By the assumptions on the coefficients appearing in the definition of A(., .), it follows that the norm .,4(v, v) _/2

for v • Hl(ft) is equivalent to the norm on Hl(ft). Thus, we take

Ilvlll=A(v,v)

We develop a sequence of nested triangulations of ft in the usual way. We assume that a coarse triangulation

{v[} of 12 is given. Successively finer triangulations {r,_,} for m > 1 are defined by subdividing each triangle

(in a coarser triangulation) into four by connecting the midpoints of the edges. The mesh size of {r_} will be
denoted to be dl and can be taken to be the diameter of the largest triangle. By similarity, the mesh size of {rm}

is 21-'_dl.

For theoretical and practical purposes, the coarsest grid in the multilevel algorithms must be sufficiently fine.

In practice, however, the coarse grid is still considerably coarser than the solution grid. Let L and J be greater
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than or equal to one and set M_, for k = 1,..., J, to be the functions which are piecewise linear with respect to
T ithe triangulation { _+L}, continuous on _ and vanish on Off. Since the triangulations are nested, it follows that

MI C M2 C .. , C Mr.

The space M_ has a mesh size of h_ = 21-Z-kdl = 21-khx.

Fix k in {1, 2,...). Let us temporarily assume that for every u E Mk,

(2.5) A(u,v)=O for allvEMk implies u=0. _ -

This assumption immediately implies the existence and uniqueness of solutions to problems of the form: Given a

linear functional F(.) defined on Mk, find u E M_ satisfying

A(u, ¢) = F(¢) for all ¢ • Mk.

In particular, the projection operator Pk : Hl(ff) _-* Mk satisfying

A(Pku, v) = A(u, v) for all v • Mk,

is well defined.

Clearly, if (2.2) has a positive definite symmetric part then (2.5) holds. More generally, if solutions of (2.1)
satisfy regularity estimates of the form

(2.6) Ilull_+__<Cllfll-l+o,

then,itiswell known (cf.,(ref.22)) that thereexistsa constant h0 such that forhk < h0, (2.5)holds and
furthermore

(2.7) I1(I- P,)ull _ ch_ll(I - Pk)ulll.

and finally,

(2.8) IlPkulll_ c Ilulh•

Even if regularity estimates of the form of (2.6) are not known to hold, then (2.5) is known from a recent result by
Schatz and Wang (ref. 23).

Lemma 2.1 (ref. 23). There exists an ho such that (2.5) holds for hk < ho. Moreover, given • > 0, there exists
an ho(e) > 0 such that for all hk • (0, h0], (2.8) holds and

(2.9) II(; - Pk)ull_<ell(; - P,)ulll.

Remark El. The above • will appear in our subsequent analysis. We note that e can be taken arbitrarily small.

However, L will be taken large enough so that (2.5), (2.8) and (2.9) hold. Thus, the coarse grid size (i.e., L) for
any estimate in which • appears will depend on e.

In our analysis, we shall use the orthogonal projectors Pk : H_(f) _ Mk and Qk : L2(fl) _ M_ which,

respectively, denote the elliptic projection corresponding to .4(., .) and the L2(fl) projection. These are defined by

.2i(JSku, v) = fi,(u, v) for all v • Mk,
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and

(Qtu, v) = (u, v) forall v e M_.

The multigrid algorithms will be defined in terms of an additional inner product (., ")k on MkMk. Examples of

this inner product in our applications will be given in the next section. Additional operators are defined in terms

of this inner product as follows: For each k, define Ak : Mk --* Mk and .4_ : Mk --* Mk by

(A_u, v)k = A(u, v) for all v E Mk,

and

(Aku, v)t = ,4(u,v) for allv e Mk.

Finally,the restrictionoperator P°_ I :Mk _-*Mt-1 isdefinedby

(P°_lu, v)k-1 = (u, v)k for all v e ma-1.

We seek the solutionof

(2.10) A(u, v) = (f, v),

This can be rewritten in the above notation as

(2.11)

for all v E Ms.

Aju = QJ.

We describe the simplest V-cycle multigrid algorithm for iteratively computing the solution u of (2.3). Given
an initial iterate uo E Mr, we define a sequence approximating u by

(2.12) ui+l = Mgj(ui, Qrf).

Here Mg s (., .) is a map of Ms Ms into Mr and is defined as follows.

Definition MG. Set Mgl(v, w) = A_lw. Let k > 1 and v, w be in Mk. Assuming that Mgk-l(', ") has been

deaned, we define Mgk(v, w) by:

(1) xt = v + Rk(w - Akv).
(2) Mgk(v, w) = z_ + q, where q is defined by

q = Mgk-l(O, P°_l(w - Aj, xk)).

Here R_ : Mk _-* M_ is a linear smoothing operator. Note that in this V-cycle, we smooth only as we proceed

to coarser grids.

In Section 3, we define Rk in terms of smoothing operators defined for the form 4(., .). Specifically, the

smoothing procedure for the symmetric problem will be denoted/_k : Mk _-* Mk and we set Rk = ]_k. In Section 4,

we consider smoothers which are directly defined in terms of the original operator Ak.

A straightforward mathematical induction argument shows that Mgr(., .) is a linear map from MrMj into Mr.

Moreover, the scheme is consistent in the sense that v = Mgr(v, Arv) for all v E Mr. It easily follows that the

linear operator E = Mgr(., 0) is the error reduction operator for (2.12), that is

U -- Ui+I --" E(u - l/i).
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Let Tk = RkAkP_ for k > 1 and set Tl = P1. Using the facts that P__IA_ = Ak-lPk-1 and Pk-1P_ = Pk-1 and

Definition MG, a straightforward manipulation gives that for k > 1 and any u E Mj,

u - Mgk(0, AkPku) = (I- Tk)u- Mgk-l(0, A_-IPk-I(I - Tk)u).

Let Eku = u - Mgk(0, AkPku). In terms of E_, the above identity is the same as

Ek = E_-I(X - Tk).

Moreover, by consistency, E = Ej and hence

(2.13) E = (I - T,)(I - T2)...(I - T.r).

The product representation of the error operator given above will be a fundamental ingredient in the convergence

analysis presented in Section 4. Similar representations in the case of multigrid algorithms for symmetric problems

were given in (ref. 9).

The above algorithm is a special case of more general multigrid algorithms in that we only use pre-smoothing.
Alternatively, we could define an algorithm with just post-smoothing or both pre- and post-smoothing. The

analysis of these algorithms is similar to that above and will not be presented.

Often algorithms with more than one smoothing are considered (ref. 3), (ref. 17), (ref. 19). This is not advised

in the above algorithm since the smoothing iteration is generally unstable.

3. SMOOTHERS BASED ON THE SYMMETRIC PROBLEM.

In this section, we consider smoothers which are based on the symmetric problem. The symmetric smoother

will be denoted by ]_k. We state a number of abstract conditions concerning these smoothing operators. We

then give three examples of smoothing procedures which satisfy these assumptions. In Section 5, we provide

convergence estimates for multigrid algorithms with Rk =/_k in Definition MG.

The first two conditions are standard assumptions used in earlier multigrid analyses. For h > 1, let/_k =

I -/_kAk (defined on Mk) and Tk =/_kAk/_k (defined on Mj). We assume that:

(1) There is a constant CR such that

(c.1) (_' _)----_< CR(_,, u)k, forall_ • Mk,
At --

(2)

(c.2)

where fl} = (I-K_kk).4; 1 and :kk is the largest eigenvalue of .4_. Here and in the remainder of this paper,

• denotes the adjoint with respect to the inner product .4(., .).

There is a constant 0 < 2 not depending on k satisfying

:i(_:, :_:) < 02(_:, ,) forall , • Mk.

Provided that (C.2) holds, (C.1) is equivalent to

(3.1) (u, u)_ < C(/_ku, u)k, for all u E M_.
At -

When ]_t issymmetric with respectto (.,')k,(C.2) statesthat the norm ofTk islessthan or equal to 0. Even in

the case of non-symmetric/_, (C.2) impliesstabilityof (I- Tk). In fact,forany w • Mj, (C.2) impliesthat

(s.2)
2((z-_,)_,(x-_)_)= A(_,_)-22(_, _)+ :i(_k_,t,_)

< A(_,_)- (2- 0)2(_,_)< :i(_,_).
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The finalconditionisthatfork > I,thereexistsa constantC satisfying

(C.3) (Tk_,/_ku)k< C_i'A(Tk_,u) forallu _ Mk.

A simplechangeofvariableshows that(C.3)isthesame as

(._,v, Rkv)t <_CA-_1([_tv, v)k for all v 6 Mk.

In the case when 1_ is symmetric, this is equivalent to

(3.3) (kkv, v)_ <_CA_I(v, v)k for all v E Mk

and is the opposite inequality of (3.1). Note that both (C.2) and (C.3) hold on Mj.

Remark 8.I. If Conditions (C.1)-(C.3) hold for a smoother Rk then they hold for its adjoint/_k with respect to

the inner product (., .)_. This means that (C.1) holds for -_k = (I -/_j_)A_ -1 and that (C.2) and (C.3) hold

with _ replacing Tk. In the case of (C.2) and (C.3), the corresponding inequalities hold with the same constants
as those appearing in the original inequalities.

Example 1. The first example of a smoother is the operator

where / denotes the identity operator on Mk and At < Ak < CAL. In this case, (3.1) holds with C = Ak/Ak, (C.2)
holds with 0 = 1 and (3.3) holds with C = Ak]Ak. T_ avoi-d the inversion of L 2 Gram matrices in the multigrid

algorithm, we use the inner product

(34) =
i

Here thesum istakenoverallnodesziofthesubspaceMk. Note that(.,.)kisuniformly(independentofk)

equivalentto (.,.)on M_.

The remainingsmootherscorrespondtoJacobiand Gauss-Seidel,pointand lineiterationmethods. We shall

presentthesesmoothersintermsofsubspacedecompositions.Specifically,we write

l

(3.5) Mk = E M_
i=l

where M_ is the one dimensional subspace spanned by the nodal basis function ¢_ or the subspace spanned by
the nodal basis functions along a line. The number of such spaces I = i(k) will often depend on k. These spaces

satisfy the following inequality.

(3.6) H - Ch, Ilvlh for all v e M_.

Example 2. For the second example, we consider the additive smoother defined by

Here A_,i : M_ --* M_ is the defined by

(.,4k,,v, X)_ = .,4(v, X) for all X E M_
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and Qk,i : M_ --* M_ is the projection onto M_ with respect to the inner product (., ")k. The constant 7 is a scaling

factor which is chosen to ensure that (C.2) is satisfied (see, e.g., (ref. ll),(ref. 5)). Note that/_k is symmetric

with respect to the inner product (., .)k. In addition, (3.1) and (3.3) are shown to hold in (ref. 11) with point

Jacobi. When the subspaces M_ are defined in terms of lines, (3.1) was proved in (ref. 5). The estimate (3.3)

easily follows in the line case using the support properties of the basis functions and (3.6). For this example, we

take (., ")t - (', ") for all k.

Example 3. We next consider the multiplicative smoother. Given f E Mr, we define/_t by

(1) Set v0 = 0 E Mk.
(2) Define vi, for i = 1,..., l, by

vi= vi-i + ,4;JQk.i(f- ,4_v_-1).

(3) Set/_tf -vl' ' :=

Conditions (C.1) and (C.2) are known for this operator (see, e.g., (ref. 5)). The next lemma shows that (C.3)

holds for this choice of Ra. For this case, we also take (., .)t = (.,-) for all k.

Lemma 3.1. (C.3) holds when Rt is defined to be the multiplicative smoother o? Example 3.

Proof. The proof uses the techniques for analyzing smoothers presented in (ref. 5). Fix k > i and let

(3.s) L = (z- P_)(z- P_b"(I- P_)

where/5_denotesthe .4(.,.) projectionontoM_and £0= I. Notethat (I - T_)= ,_tand gi-I = _i + P_i-1. Hence
!

i=1 !

and for everyueMk,(cf.,(ref. 5)) : : :- = " " ".... i......... = A((=_- _lu,_,ul = A(u, ul- A(t,,,,_,u)
1

i=1

Since h_ _< e_k 1, the proof of the lemma will be Complete if we can show that

I

(3.9) (_,_) <__h__. A(P;ti_,=,t,_,=).
i=i

Expanding the left hand side of (3.9) gives

! I

(3.10) (T_u,Tku) = E Z(Y_£_-,u,[_ik£j-,u).
i=1 j=l

Because of the support properties of {¢_}, the subspaces {M_} satisfy a limited interaction property in that for

every i, the number of subspaces j for which (v i, vj) _ O, with v i • M_ and vj • M_ is bounded by a fixed

constant no not depending on k or i. Lemma 3.1 of (ref. 5) implies that the double sum of (3.10) can be bounded

by no times its diagonal, i.e.

I

(3.11) (2,u,_,,) <_no_(P_t,_,,,P_t,_lu).
i=1
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Applying (3.6) gives

(3.12) (-f'_i-lu, P_,-lU) <_ Ch_A( P_i-lU, C.i-lu).

Combining (3.11) and (3.12) proves (3.9). This completes the proof of the lemma.

Remark 3._. The same analysis could be used for successive overrelaxation type iteration. In that case,

t, = (i- _Pl)(I- _PI-')...(_- aP_)

where/_ E (0, 2) is the relaxation parameter.

4. SMOOTHERS BASED ON Ak.

In this section, we consider smoothing operators Rk which are defined directly in terms of the nonsymmetric

and/or indefinite operator Ak. The first smoother is one that was originally analyzed in (ref. 1) and subsequently
studied in (ref. 10).

Ezample 4. For our first example of a smoother based on At,, we consider Rk defined by

Here, A t is the adjoint of A_ with respect to the inner product (-, ")k and ]k is as in Example 1. A possible
motivation for such a choice is that, on Mk, the iteration

v i = v i-I + i_2A_(f - Akv i-1)

is stable in the norm (., .)_/2 provided that i_ is greater than or equal to half the largest eigenvalue of A_A,.

Ezample 5. This example is closely related to the second example of the previous section. As in that example, we

define the line or point subspaces {M_} for i = 1,..., 1. Note that the form A(., .) satisfies a G£rding inequality

clA(_,.) - cINII2< A(_,u) for all u E Hi (f_).

Consequently, by (3.6),

(,1 - Ch_)A(=,_) <_A(_, _)

We will assume that h2 is sufficiently small so that

for all u E m_.

(4.1) Ch_ _ C1/2.

This means that A(.,-) restricted to M_ has a positive definite symmetric part. Hence, the projector P_ : Mk
M_ satisfying

A(P_v, w) = A(v, w) for all w e M_

is well defined and satisfies

(4.2) [IPZ II _<Cll_lh,_ •

The second norm is taken only over the subdomain f_ which is the set of points of f$ where the functions in M_

are nonzero. In addition, the operator Ak,i : M_ _ M_ defined by

(Ak,iv, w)k = A(v, w) for all v, w E M_,
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is invertible. We set Rk by
I

Rk 7E -a•- Ak,iQk, i.

i--1

We choose 7 as in Example 2 so that the symmetric smoother defined by (3.7) satisfies (C.2).

Example 6. Our final example is that of Gauss-Seidel directly applied to the nonsymmetric/indefinite equations.
We assume that the subspaces (M_} satisfy the conditions of the previous example. The block Gauss-Seidel

algorithm (based on Ak) is given as follows:

(1) Set v0 = 0 • Mk.
(2) Define vi, for i= i,...,ii by

-ivi = vi-1 + A_iQk,_(f Akv_-l).

(3) Set R_f = yr.

5. ANALYSIS OF THE MULTIGRID ITERATION (2.12).

We provide an analysis of the multigrid iteration (2.12) in this section. This analysis is based on the product

representation of the error operator (2.13). All of the analysis of this section is based on perturbation from the

uniform convergence estimates for multigrid applied to symmetric problems.

We start by stating a result from (ref. 6) estimating the rate of convergence for the multigrid algorithm applied

to the symmetric problem. Specifically, we replace Ak by Ak and Rk by/_ in Definition MG. Set 7"1 = PI.
From the earlier discussion, the error operator associated with this iteration applied to finding a solution for the

symmetric problem

is given by _7 = _Ts where

(5.1)

We then have the followi-ngtheorem.

ASu = Qsf

.... k _

Theorem 5.1 (ref. 6). For k > 1, let Rk satisfy (C.1) and (C.2). Under the assumptions on the domain [2 and

the coeflicients of (2.1) given in Section 2, there exists a positive constant 6 < 1 not depending on J such tha(

.4(Esn, Esu) <_ $2A(u, u) for a/l u • Ms.

To analyze the multigrid algorithms using the smoothers of Section 3, we use the perturbation operator

We note that for any u,v • Ms, for k > 1,

(5.2)

Indeed, by definition,

,4(Zku, v) = DCu, 7"_v).

A(T_.,_) = (Tk.,Aki'_)_ = (A_P_.,kiA_Pk_)k

= (AkP_u, _v)k = A(Pku, _v)

= A(u, 7";v) = fi(u, 7";v) + O(u, 7"_,v).

52



The equality (5.2) immediately follows.

To handle the case of k = 1, we have

(5.3) A(z_,, ,,) = D((_r- V,)u, P,.).

In fact, by definition,

l(P_u, v) = l(P_u, P_v)

= A(u, P_,,)- D(P,_,,P_v)

= f_(['lu,v) + D((I - Pa)u,/3iv).

The following theorem provides an estimate for the multigrid algorithm when the smoothers of Section 3 are used.

Theorem 5.2. Let Rk =/_k and assume that (C.1)-(C.3) hold. Given e > 0, there exists an ho > 0 such that for

ha < ho,

A(Eu, Eu) < 62A(u, u) for all u E Mr,

for 6 = $ + e(hl q- e). Here $ is less than one (independently of J) and is given by Theorem 5.1.

Proof. For an arbitrary operator 0 : Ms s-. Ms, let IlOlla denote its operator norm, i.e.,

A(Ou, v)
IIOtla-- sup

.,,._,_,A(u, u)l/_A(v, v)1/2"

Applying (2.4), (2.9) and (2.8) to (5.3) gives

IA(Zau,v)l < c, tl(Z- P_)ulhIlvlh_<c_ IlulllIlvlh•

This means that the operator norm of Z1 is bounded by Ce. Since the operator norm of (I - Jbl) is less than or

equal to one, the triangle inequality implies that the operator norm of (I - P_) = (I - t51 - Z_) is bounded by
l+Ce.

For k > 1, applying (Z4), (C.3), Remark 3.1, and (3.2) to (5.2) gives

IA(Z,u, v)l _<chkIlulhA(_k_, @/2
<_ch_[lulhIlvlh,

i.e., the operator norm of Zk is bounded by chk. Since, by (3.2), the operator norm of (I-7'k) is less than or equal

to one, the triangle inequality implies that the operator norm of (I - Tk) = (I - Tk - Zk) is less than or equal to

1 + eh_. Hence, it follows that
k

IIEklIA _<(1 + Ce) H(1 + chi) < C.
i--2

It is immediate from the definitions that

(5.4) E, - Ek = (E_-I - Ek-1)(I - Tk) - Ek-IZ_.

By (3.2) and the above estimates, for k > 1,

IIEk- g_lla -<lIE,-1 - Ek-lllall/- _lla + IIE,-lllallZ_lla
(5.5)

< IIEk-i- E_-_lla+ Chk.
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Repetitively applying (5.5) and using

gives that

lIE1 - E_]I_4 = IIZ_II;_ <- Ce

J

liEd -- EJ]I;4 <- Ce + C E hk <- c(hl + e).
k=2

The theorem follows from the triangle inequality and Theorem 5.1.

...... =.. _ _=

Remark 5.1. Note that e can be made arbitrarily small by taking hi small enough. Consequently, Theorem 5.2

shows that the multigrid iteration converges with a rate which is independent of J provided that the coarse grid is

fine enough. Thecoarse _r_i'd mesh size can also be taken to be independent of J.

We next consider th e c_e of Example 4. For this example, we consider first the multigrid algorithm for the

symmetric problem which uses

(5.6) _k = _;2Ak

as a smoother. From the discussion in Section 2, the iteration (2.12) with Rk (given by (5.6)) and Ak replacing,

respectively, Rk and Ak in Definition MG, gives rise to the error operator given by (5.1) where, as above, for

k > 1, Tk = Rk-4kPk. The smoother (5.6) does not satisfy (C.1) and so the first step in the analysis of the

nonsymmetric and/or indefinite example is to provide a uniform estimate for _:j given by (5.1). Such an estimate

is provided in the following theorem. Its proof is given in the appendix.

Theorem 5.3. Let Ej be given by (5.1) where Tk = RkAkPk and Rk is defined by (5.6). Then,

.4(Eju, Eju) < 62A(u, u) for all u 6 Mj.

Here 6 is less that one and independent of J.

We can now prove the convergence estimate for multigrid applied to (2.1) using the smoother of Example 4.

Theorem 5.4. Let Rk be defined by Example 4. Given e > O, there exists an h0 > 0 such that for hi <_ ho,

,4(Eu, Eu) < 62.4(u, u) for all u e M2,

for 6 = 6 + c(hl + e). Here _ is less than one (independently of J) and is given by Theorem 5.3.

Proof. For k > 1, we consider the perturbatibfi Operator :=

Zk = Tk - Tk = A;2(AtkAkPk - _t_kPk) •

Clearly,

(5.7) Zk = A-_2[A_(AkPk - .4k[ak) + (A_ - Ak).4k/Sk].

As in (5.2),

A-_I.4( (Ak Pk -- .4k Pk )u, v) = A-_ D(u, -4k Pk v)

from which it follows using (2.4) that

II_(AkPk - Ak/Sk)ll_,_<Chk.

A similar argument shows that
II_-_(A_ - Ak)PklIA _ chk.
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Itisnot difficultto show that

IIA_,lh< C_k.

Combining the above estimates with (5.7) gives

llZklh < II_-;L4_ll:411_-;'(AkPk- .AkPk)[l_.

+ II_;'(A_ - Ak)Pkllall_;_AkP_ll:_< _hk.

The remainder of the proof is exactly the same as that of Theorem 5.2. This completes the proof of the theorem.

We next consider the case of Example 5. We use perturbation from the multigrid algorithm for .4 which uses

the smoother /_k defined by Example 2. Theorem 5.1 provides a uniform estimate for the operator norm of/_j.

Theorem 5.5. Let Rk be defined by Example 5. Given e > 0, there exists an ho > 0 such that for hi <_ ho,

A(Eu, Eu) <_ 62A(u, u) for all u e Mj,

for _ = $ + c(ht + e). Here _ is less than one (independently of J) and is given by Theorem 5.1 applied Co [_k

defined in Example 2.

Proof. For thiscase,the perturbationoperator Zk isgivenby

As in (5.3),

Applying (2.4), (3.6) and (4.2) gives

(5.s)

and hence

l

iffil

A((p_ - Pbu, v) = D((x - Pbu, Pb).

A((P_- Pb_,,)< chkll,_lh,ntIlvlh,n_,

l

A(Zku,v)< Chk_, Ilulh,._,IMh,n, •
iffil

Using the limited overlap properties of the domains, _ gives

IlZklh < ch_.

The remainder of the proof of the theorem is exactly the same as that given in the proof of Theorem 5.2.

We finally consider the case of Example 6. We use perturbation from the multigrid algorithm for A which uses

the smoother/_k defined by Example 3. Theorem 5.1 provides a uniform estimate for the operator norm of Ej.

Theorem 5.6. Let Rk be defined by Example 6. Given e > 0, there exists an ho > 0 such that for hi <_ ho,

_(Eu, Eu) < _(u, u) for all u _ M_,

for _ = _ + c(hl + e). Here $ is less than one (independently of J) and is given by Theorem 5.1 applied with [_k

defined as in Example 3.

Proof. The perturbation operator for this example is

Zk=Tk--Tk=_,--£,
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where _1 is given by (3.8) and
_,= (z- P_)(z- P_-')...(z- P_)

with £0 - I. As in (5.4),

t,- g,= (X- P_)(g,-,- e,_,)- (P_ - P_)E,_,.

Sincethe lasttwo terms are orthogonal with respectto .4(.,.)we have that

Because of(5.8)and the factthat the operator norm of(I - P_) isbounded by one,itfollowsthat

II(g,- ,_,)_11__<II(&l- E,-1)_II_-+ ch_II,E,-,_ll_t,,

- ^

Summing over i,sincego = go = I,we obtain

t

(5.9) II(t, - E,)ull_< ch__ ll_,-,ull_._,_•
i--I

We shallshow that

(5.10) _ IIS,-,_ll_.,t< Cll_ll_.
i--1

By the arithmetic-geometricmean inequality,the definitiong, and the limitedinteractionproperty (see(3.10)and

above) itfollowsthat

t t t

_ I1_,-,_1t_,,.:-<2_ I1_11_.o,.+ 2_11_ -c,-,_,ll_.,_,
/=1 /=1 i=l

t i-1 2

< Cll_ll_+ 2_ _ P;'E.,_,u
i=1 m=l l,fl_

(5.11) t t

< C(llull_-+ _ Y] IIP;"S_-,ull_,o,_)
m=l '=1

t

< C(ll.ll_- + _ IIP_"E_-,.II_).
m----1

In order to estimate the lastterm on the rightof (5.11)we write

(5.1_) = A((s___- s_)_,(s=_]+ s_)_)- 2_(PrS=_,_,s_)
= A(t;.__u, _:,.__,_)- A(S.,u, _:,.u)

- 2A(P_"g,,_]u,(I- Pr)£,,__)u).

Now by (5.8)

(5.13)
_(P_-s__,_,(t - P_")s__,_)= 3(ers..-,_,, (_f' - Pr)S=-,)u)

<_Ch_IIP_'S,.-_,IIAIIS_-_lh,nr•
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Hence, combining (5.12) and (5.13), we have

2

Summing over m we conclude that

t t

rn=l _=1

This together with (5.11) yields (5.10) when hk is small enough. Finally, we obtain from (5.10) and (5.9) that for

k > 1, Ilz iIx< Chk.

The remainder of the proof of this theorem is the same as that of Theorem 5.2.

Remark 5. _. The same analysis could be used for successive overrelaxation type iteration. In that case,

=

where _ E (0, 2) is the relaxation parameter.

Remark 5.£ Many extensions and generalizations of the techniques given above are possible. These techniques

lead to uniform estimates for multigrid iteration methods for solving nonsymmetric and/or indefinite problems for

the following applications.

(1) Approximations using higher order nodal finite element spaces.

(2) Three dimensional problems.
(3) Problems with discontinuous coefficients as discussed in (ref. 6).

(4) More general boundary conditions.
(5) Problems with local mesh refinement as described in (ref. 11).

(6) Finite element approximation of problems on domains with nonpolygonal boundaries as discussed in

(ref. 6).

In addition, the perturbation analysis given above can be combined with results for additive multilevel

algorithms, for example, Theorem 3.1 of (ref. 6). This leads to new estimates for additive multilevel
preconditioning iterations applied to indefinite and nonsymmetric problems. Provided that the coarse grid is

sufficiently fine, the operator J

P=r,T 
k=l

has a uniformly (independent of J) positive definite symmetric part with respect to the inner product A(., .) and

has a uniformly bounded operator norm. These results extend to all of the applications discussed in Remark 5.3.

6. APPENDIX

We provide a proof of Theorem 5.3 in this appendix. We will apply the analysis given in the proof of Theorem

3.2 of (ref. 6). Note that we cannot directly apply Theorem 3.2 of (ref. 6) since the smoother/_ = _2Ak does

not satisfy (C.1). We note, however, that Theorem 5.3 will follow from the proof of Theorem 3.2 of (ref. 6) if we

show that (C.2) holds as well as (3.5) and (3.6) of (ref. 6) with T_ replaced by Tk defined above. Clearly, (C.2)

holds with e = 1. The remaining two inequalities corresponding to (3.5) and (3.6) of (ref. 6) are

(6.1) ./.(Tkv, v) < (Crlk-l)_i(v, v) for all v e Mr, 1 < k
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and

J

(6.2) A(v,v) < c _ A(_k_,_)
kffil

for all v E Mj.

Here y is less than one and independent of k and I.

From the definition of ,_k, we obvi0usly have

As in (ref. ?), we have set 55k = A_-lA k. Inequality (6.i) follows from Lemma 4.2 of (ref. ?).

Inequality (6.2) can be rewritten,

(6.3)
J - 2 ^ . 2)

kffi2 1

To prove this we proceed as follows. Let u E Mj and Q0 = 0. Then

(6.4)

Now, for k > 1,

3

A(u, _,)= __, AO,, (Qk - Ok-1)u)
k=l

__ A(PlI_ ,72) -_- E _k2 AkPkU , A(Qlu, QlU)
kffi2

J _/2

+ E A_(Ak-1 (Qk - Ok-1)u, (Ok -- Ok-1)U)k)
kffi2

(Ak-1 (Qk - Ok-1)u, (Ok -- Qk-l)u)k

By well known approximation properties,

(A-kl/2(Qk -- Qk-1)u, ¢)2k
= sup

_Mk (¢, ¢)k

((Qk - Qk-1)u, (Q, - Q,-1)¢)_
= sup

((Ok -- Qk-l)¢, (Qk - Qk-l)¢)i/2 <_ C ll(Qk- Qk-_)¢[[-<Chlc I[¢111.

Combining the above estimates gives

(6.5)

J
-2 ^-i

A(Qlu, Olu) + _ Ak(A k (Qk - Qk-1)u, (Qk - Ok-1)U)k
k=2

<_ C A(Olu, Qlu) + _Ak [[(Qk - Qk-1)ull 2
k=2

< CA(u, u).

The last inequality of (6.5) is (4.5) of (ref. ?) and also can be found in (ref. ?). Combining (6.4) and (6.5) proves
(6.3) and hence completes the proof of the theorem.
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